

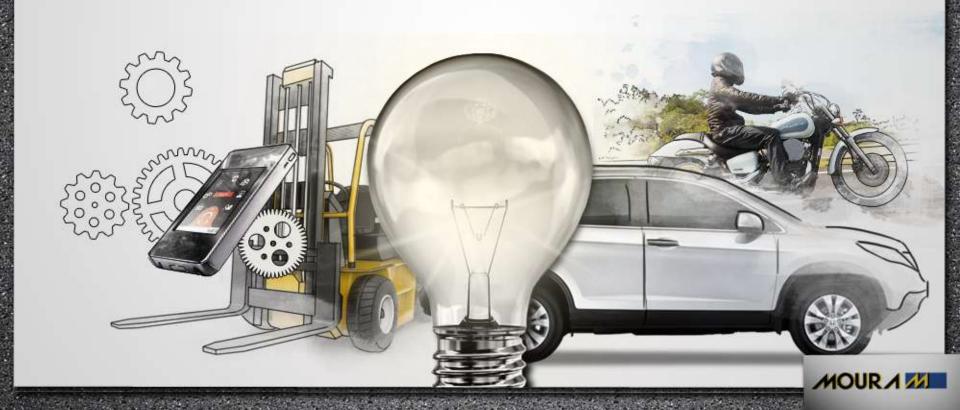
Energia

Está em todo lugar!

Onde tem Energia, tem Moura

Onde tem Energia, tem Moura

Onde tem Energia, tem Moura



Soluções em Baterias

Automotivas

7 milhões de baterias/ano

Industriais
365 MWh/ano

Presença

✓ Marca líder na América do Sul

√6 plantas industriais

✓ 65 centros de distribuição

√4.200 colaboradores

Principais demandas para as baterias dos VE's

- Redução do Custo
- Aumento da Densidade Energética (Redução de peso e/ou aumento da autonomia)
- Aumento da vida útil
- Redução do tempo de recarga (Maior Aceitação de Carga)

Aspectos importantes para a eletrificação veicular

- Políticas governamentais para redução da emissão de CO₂ (no Brasil, o InovarAuto)
- Preço da Gasolina
- Combustíveis Alternativos
- Disponibilidade da Rede Elétrica
- Custo e Maturidade das Baterias
- Preço dos Veículos (Elétricos e Híbridos)

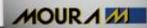
Tecnologia de Veículos Híbridos

	Start / Stop	Freio Regenerativo	Aceleração Assistida	Propulsão Elétrica
Micro Híbrido	√	√ Limitado		
Híbrido Médio	\checkmark	✓	✓	
Híbrido Completo	✓	✓	✓	✓
Híbrido 'Plug In'	√		√	Autonomia Estendida

Tecnologias de baterias para Veículos Híbridos

	Micro	Mild	Full	Plug-in & VE
	2- 4 kW 12 - 24 V	5-15 kW 48 - 120 V	25-100 kW 100 - 350 V	40-130 kW 150 - 600 V
	Chumbo Ácido Pb-A • Enhanced Flooded Battery (EFB) • VRLA-AGM	Baterias Avançadas de Chumbo Ácido (Pb-C)		
		NiMH		
			Ìons de Lítio	
				Na-NiCl ₂ (Zebra) Células de Combustível
				MOUR A WA

Micro Híbridos - A escolha dos consumidores


Vantagens:

Preço do veículo acessível Larga Autonomia

Tensão Baixa Bateria barata

	Micro HEV	Full HEV
Bateria	Pb Ácido Avançadas	NiMH ou íons de Lí
Custo da Bateria, \$	300	3000
Economia Combustível	5%	20%
Vendas em 2020	35 M	3,5 M

Fonte: Chr. Pillot, Avicene Energy, France, 2013 Automotive Batteries Conference, Strasbourg, Junho 2013

Estratégia do ALABC para veículos híbridos

Desenvolver baterias de Pb-C:

- Tão boas em performance quanto as de NiMH e de Íons de Li
- Custo próximo as de baterias de Pb-A
- Tão sustentáveis e recicláveis quanto as de Pb-A

Utilizar baterias de Pb-C em híbridos otimizados para:

- Substituir as baterias originais (extremamente caras)
- Criar novos tipos de híbridos veículos que combinem potência, baterias de baixo custo e alta economia de combustível

Programa de Demonstração de Veículos

20,4

Ciclo	PbC	NiMH
Cidade	26,3	22,7
Cidade + AC	21,3	15,4
Estrada	25,4	26

Civic

Estrada + AC

Com PbC: Menor consumo de combustível na cidade

19,6

Honda Insight: PbC vs. NiMH

- Mesma potência / energia
- ➤ Vida útil similar
- >Custo muito menor

Soluções para veículos elétricos

Ônibus híbrido

Parceria com a Eletra desde 2006, usando baterias de Pb-C

Visite nosso Site: www.moura.com.br