

APRESENTAÇÃO

Apresentação preparada por:

Ronaldo Sampaio PhD.

Paulo César C. Pinheiro Dr.

Maria Emília Rezende MsC.

- Diretor da RSConsultants

Professor da EE UFMG

Diretora da Biocarbo

Contatos:

Ronaldo@ISSBrazil.org

Pinheiro@demec.ufmg.br

EmiliaRezende@biocarbo.com www.biocarbo.com

DEFINIÇÕES

Produtividade:

Velocidade

Quantidade de produto produzida num equipamento num determinado intervalo de tempo. (ton/mês, m³/mês)

Rendimento:

Economia

Quantidade de produto produzida com uma quantidade de insumos. (kg carvão/ kg madeira)

O QUE É O CARVÃO VEGETAL

"Resíduo sólido resultante da decomposição térmica da biomassa obtido pelo aquecimento na ausência de ar (pirólise) a uma temperatura superior a 300°C"

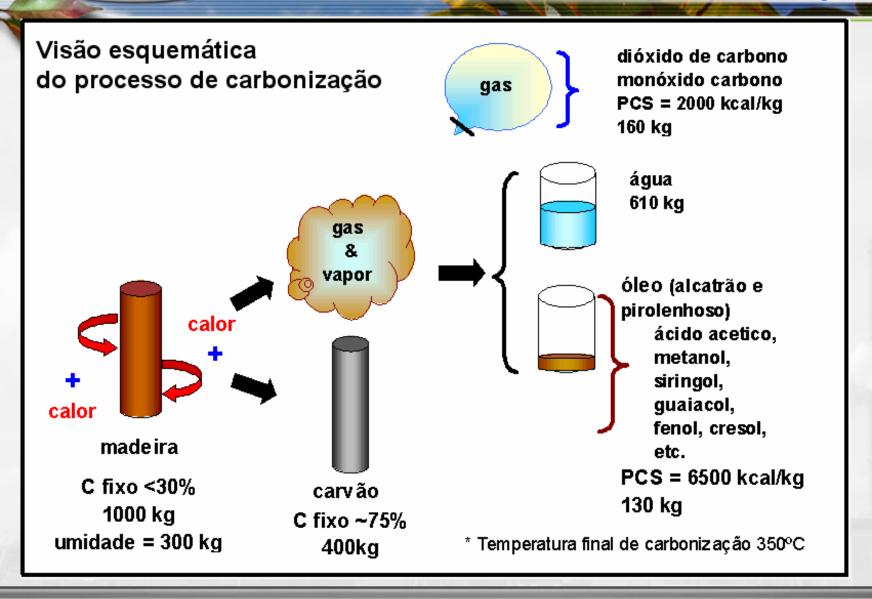
Sua produção vêm desde os primórdios da humanidade, sitios arqueológicos datam de 20.000 a 30.000 AC.

Como as temperaturas de combustão são altas, permite a fusão de metais.

Graças ao carvão vegetal o homem saiu da idade da pedra (idade do Bronze 3.000 AC) e o uso do fole de ar em 1.200 AC levou ao inicio a idade do Ferro.

Definições Carbonização

Estatísticas


Curto Prazo

Longo Prazo

Conclusões

Produtos da Carbonização

ConsuFatores que Influenciam na Carbonização

atores que Influenciam na Carbonização

- Temperatura da Carbonização
- Velocidade da Carbonização
- Combustão no Forno de Carbonização
- Tipo de Biomassa
 - Composição da Biomassa
 - Umidade da Biomassa
 - Dimensões da Biomassa (diâmetro, comprimento)
- Tipo de forno
 - Perdas Térmicas
 - Entrada de Ar
 - Tiragem
 - Pressão

Fornos de Carbonização

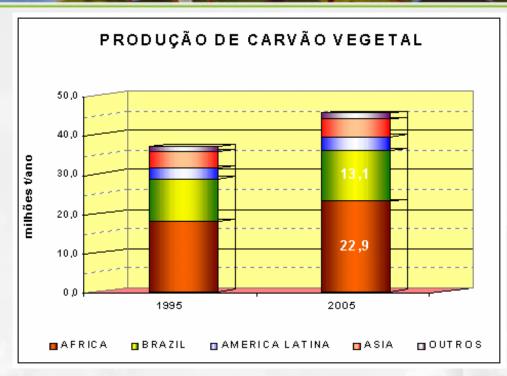
60% da produção de carvão vegetal ainda é baseada nos fornos rabo-quente.

Situação pouco provável em função de conscientização nos últimos anos.

FAIXA DE RENDIMENTO BASE SECA:

- Máximo 30%
- Típico 20 ~25%

Fornos de Carbonização


FAIXA DE RENDIMENTO BASE SECA: Máximo 40% V&M• Típico 30 ~34%

Fornos de Carbonização

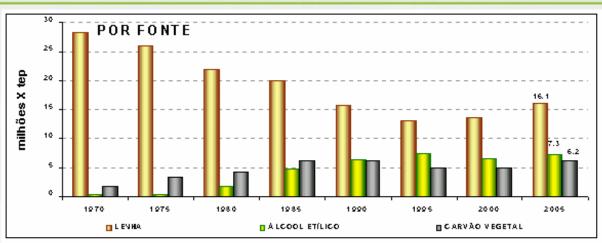
TIPOS DE FORNOS E PRINCIPAIS CARACTERÍSTICAS

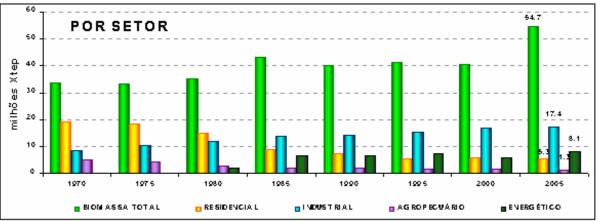
	dyly					
NOME	RABO QUENTE	FORNO PP	RETANGULAR	METÁLICO	ACESITA	
RE GIME	BATELADA	BATELADA	PATELADA	BATELADAS ALTERNAD	AS CONTÍNUO	
ETAPAS ACONTECEM	AO LONGO DO TEMPO	AO LONGO DO TEMPO	AO LONGO DO TEMPO	AO LONGC DO TEMPO/FOE DESLOCADOS	AAG MESMO TEMPO A LONGO DO FORNO	
SECAGEM	INTERNA	INTERNA	INTEFNA	EXTERNA	INTERNA	
RE SFRIAMENT	O INTERNO	INTERNO	INTEFNO	EXTERNO	INTERNO	
TEMPO DE RESIDÊNCIA	180 horas	180 horas	320 horas	3 horas	12 horas	
PRODUÇÃO FORNO	0,15 tmade ra/dia	0,25t madeira/dia	4,2 t madeira/dia	4,1 t madeira/dia	45 t madeira/dia	
SUPRIMENTO D	E MADEIRA ++++	MADEIRA++	MADEIRA++	Madeira+		
ENERGIA	VOLÁTEIS +	VOLATEIS+++	VOLÁTEIS -++	VOLÁTEIS ++++	VOLÁTEIS +++++	
RENDIMENTO MÁXIMO	30%	39%	39%	40%	40%	
SUBPRODUTOS	OÃN	NÃO	NÃO	OÃN	300 kgt carvão	
TAMANHODAS TORAS	1,0 metro	1,5 metro	2 a 4 metros	2,0 metros	0,30 a 0,50metro	
ME CANIZAÇÃO	não	OÂN	RAZOÁVEL	razoável	BOA	
INVESTIMENTO	7.\$300,00p.orfonno	R\$300,00porfonno	R\$50.000,00p.orfonno	F\$150.000,0% or form	R\$2.0 milhões por forno	
III VESI IMENTO	R\$2.000,00t madeira/dia	R\$3.200,00tmadeira/dia	R\$12.000,00.madera/dia	R\$35.000,0@madeiradia	R\$45.000,03madeira/dia	

Consultants ESTATÍSTICAS DE PRODUÇÃO E USO

A produção mundial (2005) foi de 45 milhões de toneladas. África 50% da produção mundial é voltada para uso doméstico. Brasil 28% da produção mundial com 90% centrada no uso siderúrgico.

A siderurgia a carvão vegetal é um relevante e tradicional exemplo de uso industrial de biomassa em larga escala.

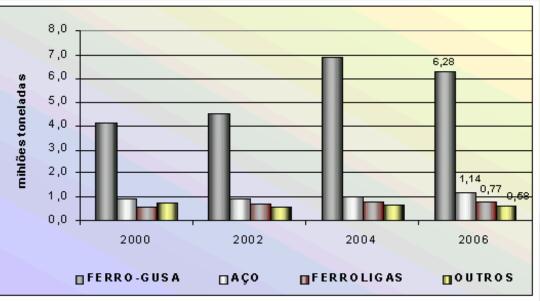

Consumo de Biomassa no Brasil


Faltam políticas publicas

O consumo de biomassa é crescente, principalmente no setor industrial e energético.

Lenha para uso doméstico e agropecuário é decrescente.

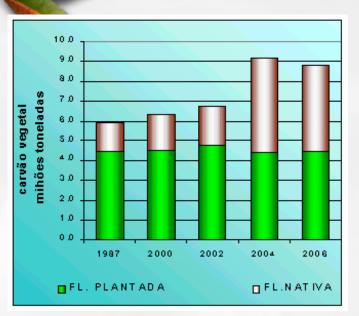
Participação de biocombustíveis é crescente:

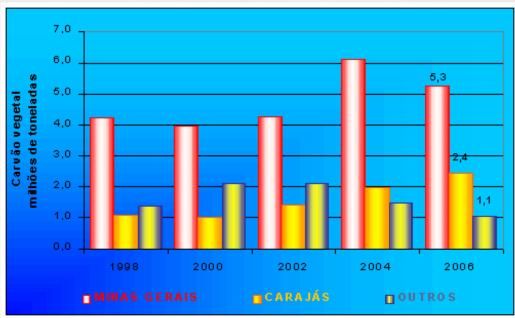

Líquido: Etanol – 7,3 milhões de tep

Sólidos: Carvão Vegetal - 6,2 milhões de tep

Lenha Industrial - ~10 milhões de tep

Usos do Carvão Vegetal

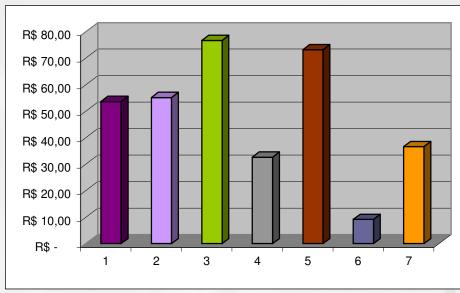

Siderurgia mundial vive um grande boom.


A reciclagem de sucata precisa de fontes de ferro virgem, o ferro-gusa de carvão vegetal é um produto *prime* devido a sua pureza.

O baixo investimento nos mini alto-fornos e alta produtividade das florestas de eucalipto garantem alta competitividade do gusa.

Grandes grupos estão investindo principalmente na região de Carajás.

Fontes e Regiões Consumidoras

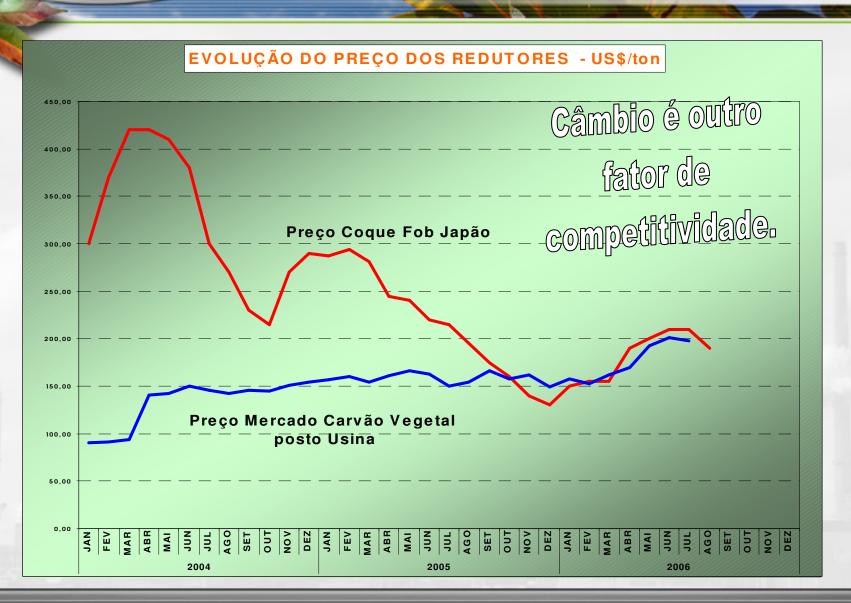

Por 20 anos a participação de carvão de floresta nativa ficou em 30%.

A partir de 2003 a demanda mundial por ferro-gusa e os altos preços levaram ao rápido aumento da produção elevando a praticpação da floresta nativa para 50%.

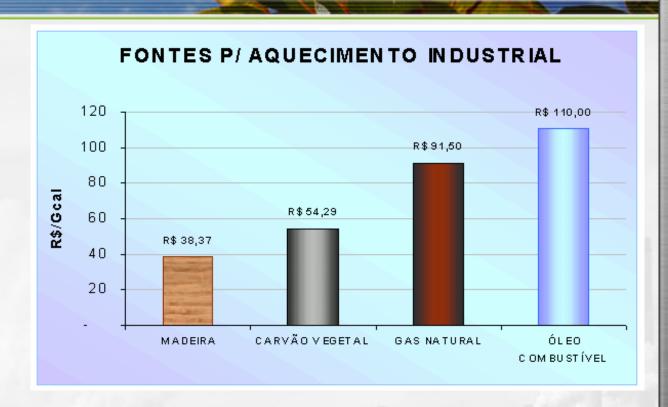
Ao preço de R\$ 400,00/ton de CV é viável o transporte por 2000 km.

Consultar Custos de Produção e Competitividade

1	Despesas silvicultura	R\$	53,68
2	Juros Inv. Floresta (15% aa)	R\$	55,20
3	Exploração	R\$	76,72
4	Carbonização	R\$	32,64
5	Expedição e frete (500 km)	R\$	73,20
6	Impostos	R\$	9,16
7	Outros	R\$	36,64
Soma		R\$	337,24


Madeira posta na unidade de carbonização é 55% do custo.

Investimento de R\$ 4.300/ha são 70% concentrados nos 18 meses iniciais e colheita aos 7 anos é a razão da alta participação de juros no custo. Dificuldades para empresas de médio porte.


Frete é fator importante de custo e os preços atuais viabilizam transportes por 2000 km.

A carbonização representa 10% do custo e não tem merecido a atenção devida dos gestores deste negócio.

Consultar Custos de Produção e Competitividade

Consultar Custos de Produção e Competitividade

Biocombustíveis sólidos são imbatíveis em preço para aquecimento industrial.

Preferidos pelas indústria de pequeno e médio porte.

A falta de valorização do conhecimento leva a baixa eficiência de uso.

Perspectivas de Crescimento

CAF produz carvão para mercado

Além da expansão, a meta da CAF é produzir o ferro-gusa mais barato do grupo Arcelor/Mitall.

Perspectivas de Crescimento

A produção nacional de CV deve dobrar até 2015, devido aos novos empreendimentos siderúrgicos em implantação e ao aumento de capacidade.

Plantios apresentam crescimento com ênfase nos programas de fomento florestal.

Evolução dos Plantios Anuais em MG

	nectares		
Ano	Fomento	Próprio	TOTAIS
1997	11.778	23.686	35,464
1998	10.612	23.295	33.907
1999	14.381	21.408	35.789
2000	16.052	28.766	44.818
2001	12.506	51.234	63.740
2002	9.540	62.275	71.815
2003	16.531	88.061	104.592
2004	29.458	111.197	140.655
2005	27.714	133.544	161.258
2006	42.808	106.045	148.853

Soluções RSConsultants

RSConsultants

Consultoria em Energia e Siderurgia

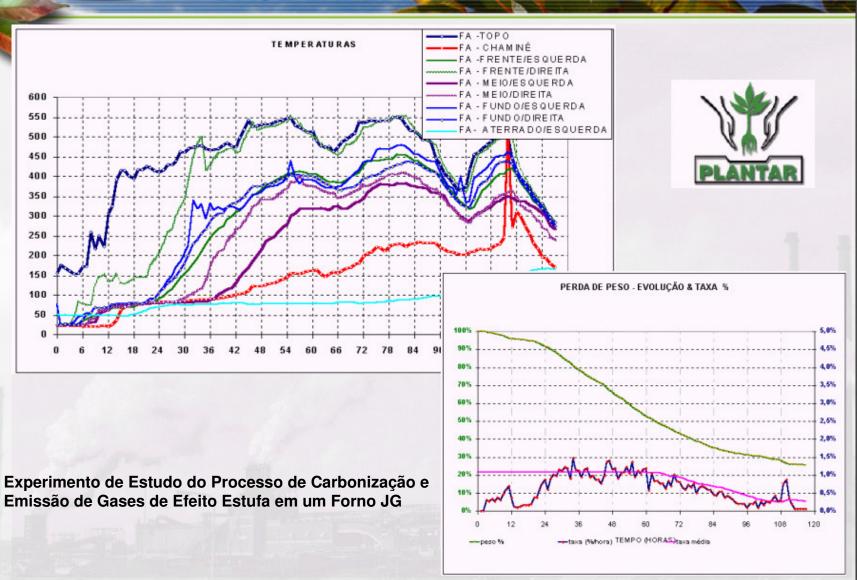
- Avançado conhecimento tecnológico graças aos trabalhos de P&D realizados desde 1980 em cooperação com empresas de carbonização e siderurgia.
- Rede de contatos técnicos e comerciais em todo território nacional

OBJETIVOS:

Manter o Avanço Tecnológico em Biomassa

- Melhorar ainda mais o rendimento das operações
- Desenvolver um acompanhamento preciso das operações Reprodutibilidade
- Aumentar o espectro de utilização

Soluções RSConsultants Consultants BALANÇO DE CO2 E O2 NA PRODUÇÃO DE AÇO



Emissão de CO₂ 1886 kg Total Consumo O₂
1331 kg

Total Emissão SO₂ 8.4 kg

Soluções RSConsultants BASE EXPERIMENTAL - PROJETO PLANTAR

Soluções RSConsultants PROJETO PLANTAR

UNFCCC/CCNUCC

CDM – Executive Board

AM0041/ Version 01 Sectoral Scope: 4

Approved baseline and monitoring methodology AM0041

"Mitigation of Methane Emissions in the Wood Carbonization Activity for Charcoal Production"

I. SOURCE AND APPLICABILITY

Saurer

This methodology is based on the project activity "Mitigation of Methane Emissions in the Charcoal Production of Plantar, Brazil" whose baseline and monitoring methodology and project design document were prepared by RS Consultants, Statistics Department of IPEAD/UFMO - Institute of Economic, Administrative and Accounting Research of the Federal University of Minas Gerais, Plantar S/A and Carbon Finance Unit of the World Bank. For more information regarding the proposal and its consideration by the Executive Board please refer to case NM0110-rev: "Mitigation of Methane Emissions in the Wood Carbonization Activity for Charcoal Production" on

http://edm.unfccc.int/methodologies/PAmethodologies/approved.html

This methodology also refers to the latest version of the "Tool for the demonstration and assessment of additionality".

Selected approach from paragraph 48 of the CDM modalities and procedures

"Existing actual or historical emissions, as applicable"

Applicability

The methodology is applicable under the following conditions:

- Emission reductions are achieved through the adoption of technologies and processes for improved kiln design and operations, thereby replacing the existing kilns by newer design, that avoid or diminish the production of methane emissions in the carbonization process.
- Local regulation does not require controlling methane emissions in charcoal production or is less stringent than the project controls or laws/regulations exist for mandating the project technology but the laws/regulations exist, the project technology but the laws/regulations exist, the project activity is considered additional and shall receive credit only if it is demonstrated that there is widespread non-compliance with the regulation. The compliance rate shall be monitored on an annual basis. The evidence of non-compliance shall be based on data from the control group, set up as per this methodology, and/or data on legal action and enforcement mechanisms implemented under the prevailing regulation. The relevant laws and regulations are considered enforced if more than 50% of the charcoal production activities comply with the relevant laws and regulations. Other registered CDM projects are to be included in the analysis if the CDM has been used in more than 50% of the cases where the legislation or regulation has been enforced.

PLANTAR

Approved baseline and monitoring methodology AM 0041 "Mitigation of Methane Emissions in the Wood Carbonization Activity for Charcoal Production"

Soluções RSConsultants FORNOS DE CARBONIZAÇÃO

Forno PP 3,90m de diâmetro para Ferro Gusa Carajas/CVRD

Projeto para 18.500 t/mês -2336 fornos Unidades de produção variando entre 105 fornos ate 456 forno.

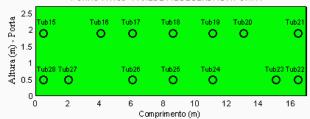
Sistema de colheita mecanizado, madeira cortada e transportada para a unidade de produção com 3,00m sendo tra çada ao meio antes da carga dos fornos.

Carga e descarga manual dos fornos Custo do forno R\$ 800,00

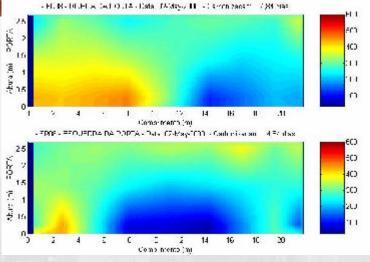
SISTEMA INTEGRADO DE CARBONIZAÇÃO

FAIXA DE RENDIMENTO BASE SECA:

- Máximo 40%
- Típico 30 ~34%



CONTROLE DE TEMPERATURA EM FORNOS



Definições

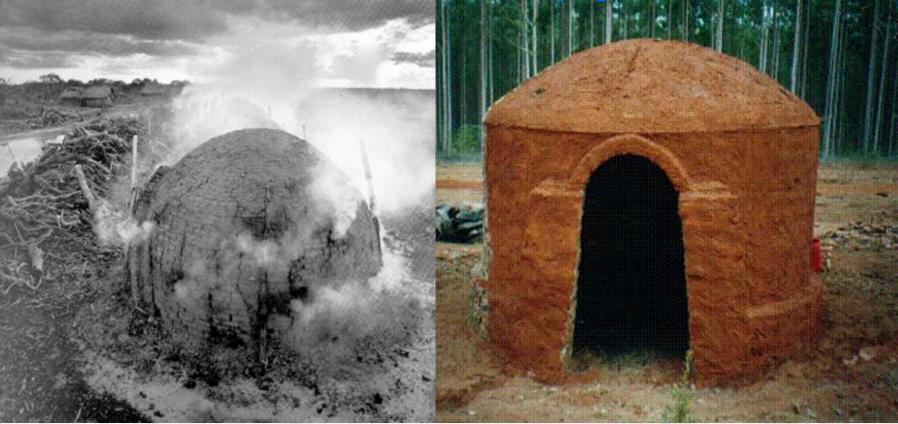
Carbonização

Estatísticas

Curto Prazo

Longo Prazo

Conclusões


MELHORIAS A CURTO PRAZO

MELHORIAS A CURTO PRAZO

MELHORIAS A CURTO PRAZO

SUBSTITUIÇÃO DOS FORNOS

Forno Rabo-Quente

Forma semi-esférica (dificuldade enchimento)

Tiragem direta

Grande numero de tatus e baianas

Forno PP

Forma cilíndrica

Tiragem inversa

1 único tatu

Definições Carbonização Estatísticas

Curto Prazo

Longo Prazo

Conclusões

MELHORIAS A CURTO PRAZO

CONTROLE DA CARBONIZAÇÃO

CONTROLE TRADICIONAL 200.000 anos de conhecimento

- -Cor e cheiro da fumaça
- -Volume da fumaça
- -Temperatura do forno

Objetivo: Grande produtividade volumétrica: MDC/mês

CONTROLE TECNOLÓGICO

- -Medição da massa e umidade (balanço de massa)
- -Medição da temperatura
 - Garantir condições ótimas de carbonização
 - Evitar queima

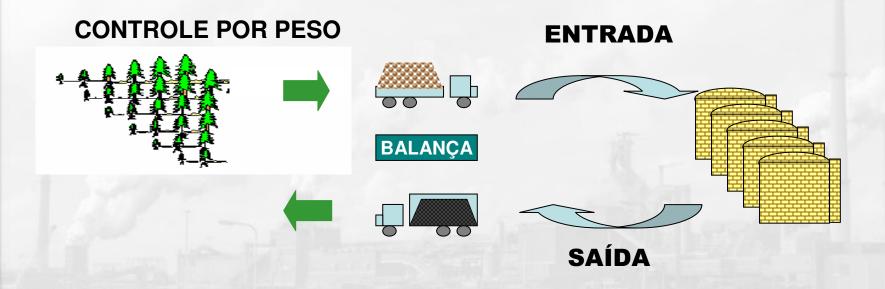
Objetivo: Grande rendimento em massa: kg carvão / kg madeira seca

Temperature Sensor

Interface Module

MELHORIAS A CURTO PRAZO

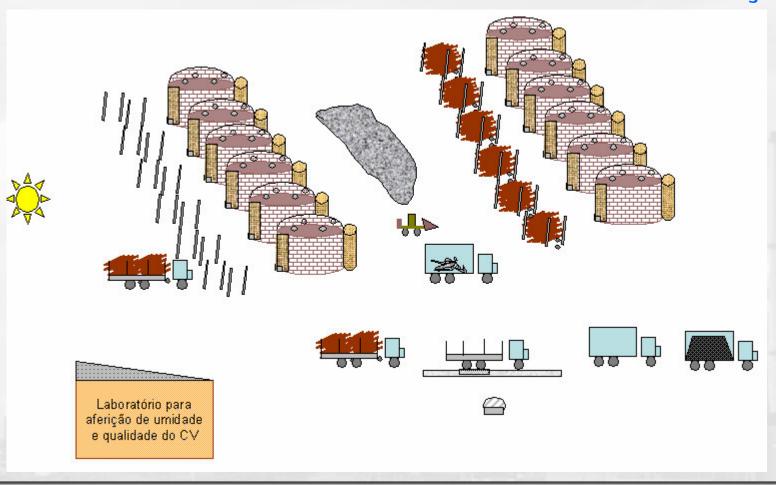
CONTROLE DA TEMPERATURA DE CARBONIZAÇÃO


Estatísticas Curto Prazo Definições Carbonização

Cable

MELHORIAS A CURTO PRAZO

RENDIMENTO EM PESO COMO FATOR DE ESEMPENHO


Obter o maior rendimento possível.

MELHORIAS A CURTO PRAZO

A ORGANIZAÇÃO LOGÍSTICA E TECNOLÓGICA DE UMA UNIDADE DE CARBONIZAÇÃO®

Definições Carbonização

Estatísticas

Curto Prazo

Longo Prazo

Conclusões

MELHORIAS A CURTO PRAZO

Se enfornar 5000 kg madeira anidra.

- •produz 1000 kg de carvão
- rendimento b.s. ~ 20%

Se bem operado pode produzir

rendimento b.s. ~ 30%1500 kg de carvão

nara elento.

FREINAMENTO DE PESSOAL

THE COULT

Boa evolução operacional

Se bem operado ao enfornar 5000 kg madeira anidra.

- pode produzir 1800 kg de carvão
- rendimento b.s. ~ 36%
- Estimativa de rendimento médio atual = 27% (1350 kg de carvão).

FORNO PP

MELHORIAS A LONGO PRAZO

MELHORIAS A LONGO PRAZO

MELHORIAS A LONGO PRAZO

SUBSTITUIÇÃO DOS FORNOS

Retorta de Carbonização Contínua da Acesita

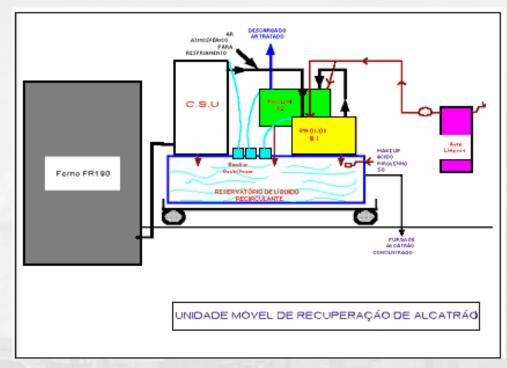
Retorta Lambiote

RS Consultants

MELHORIAS A LONGO PRAZO

SUBSTITUIÇÃO DOS FORNOS

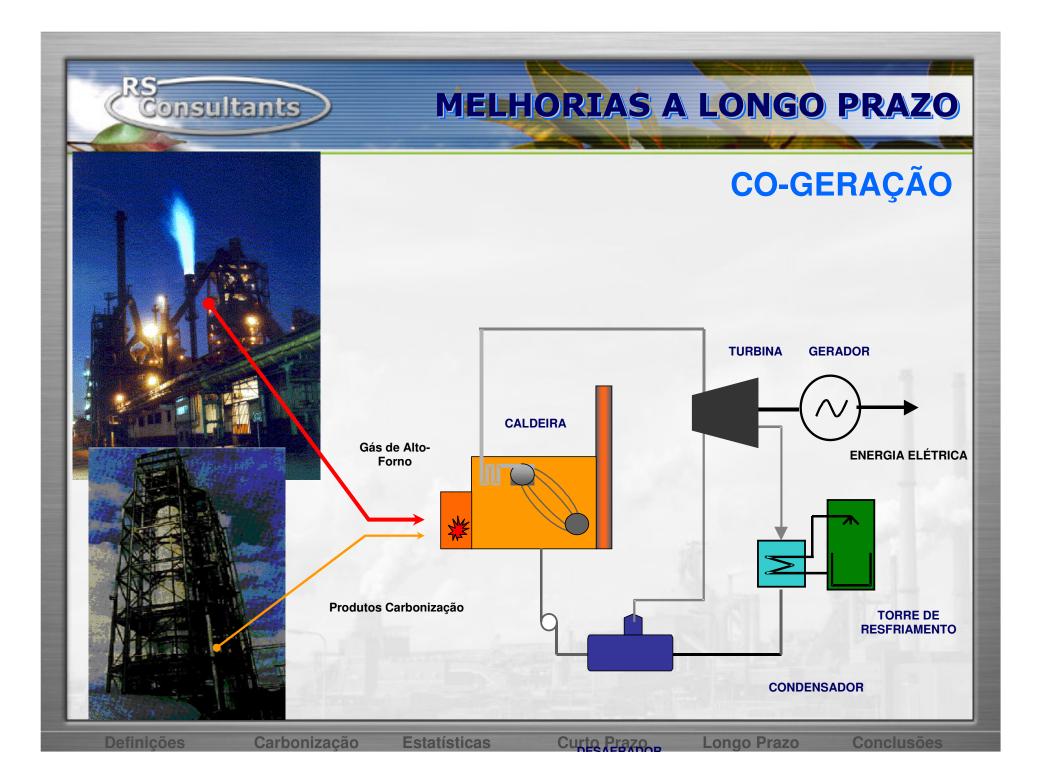
Processo DPC com sistema Roll-On. Modular, baixo custo operacional, eficiente



MELHORIAS A LONGO PRAZO

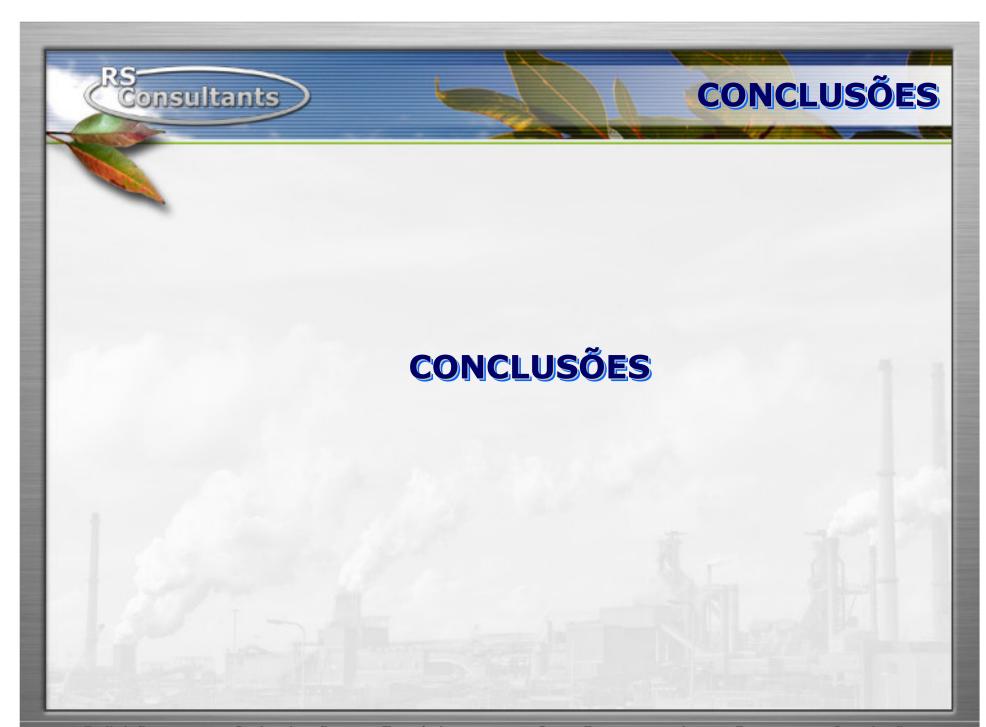
USO DOS SUBPRODUTOS Recuperação do Alcatrão

Recuperador da Alcatrão V&M



MELHORIAS A LONGO PRAZO

USO DOS SUBPRODUTOS Queima do Alcatrão



MELHORIAS A LONGO PRAZO

USO DOS SUBPRODUTOS Produção de Briquetes

 Produção de Briquetes a partir dos finos de carvão vegetal, utilizando os condensáveis como ligante.

CONCLUSÕES

A siderurgia a carvão vegetal opera normalmente sem uma tecnologia de carbonização apropriada.

É possível uma maior eficiência na produção de carvão vegetal de qualidade siderúrgica e recuperação e beneficiamento de subprodutos e com baixo investimento.

Existe a necessidade de uma forte aceleração de desenvolvimento tecnológico, devido ao aumento significativo do consumo de biomassa lignosa (lenha e derivados)

Os produtores florestais devem estar em plena harmonia com o mercado:

- Competição ou complementação com os produtos concorrentes
- Equilíbrio de remuneração a ser defendido
- Garantia de fornecimento a longo prazo
- Estruturação e Organização da produção

CUSTO DO DESPERDÍCIO

- Para uma <u>produção brasileira</u> de 40 milhões de MDC/ano (10 milhões de toneladas) de carvão vegetal.
 - ✓ Estimando que 50% desta produção é feita em fornos de alvenaria com baixo rendimento (25% em peso).
 - ✓ Uma elevação do rendimento para 34%, significaria uma disponibilidade adicional de 1,35 milhões ton/ano de carvão vegetal utilizando a mesma quantidade de madeira.

A falta de conhecimento na cadeia produtiva leva ao desperdício de:

1,35 milhão X R\$300,00 = R\$ 400 milhões/ano

Com tecnologias modernas é possível aproveitar subprodutos:

Alcatrão combustível (2,5 mlhões ton/ano = 10 milhões de BEP)

10 milhões x US\$60/barril = R\$ 1,2 bilhão

RSConsultants

A RSConsultants possui conhecimento tecnológico avançado do uso e produção da biomassa e do carvão vegetal.

A RSConsultants possui grande experiência no uso e produção de biomassa e carvão vegetal.

RS Consultants

CONCLUSÕES

Tecnologias tipo container

A RSConsultants está apta a assessorar a implantação de sistemas energéticos baseados no uso da biomassa e do carvão vegetal, adaptando as tecnologias à realidade brasileira.

Soluções RSConsultants

- Avaliação qualitativa das operações atuais de carbonização. Visitas técnicas e relatório de sugestões de melhorias.

- Auditoria tecnológica no estado da arte do processo de carbonização.

Avaliação dos rendimentos gravimétricos atuais analisando a metodologia de carbonização da empresa.

Objetivo: determinar o potencial de ganhos de rendimento gravimétrico com o processo em uso.

- Programa de treinamento e desenvolvimento de metodologia operacional através do controle de processo.

Desenvolvimento de procedimentos e treinamentos contínuos nos operadores e administradores.

Objetivo: continuidade pelo auto-aprendizado.

CONCLUSÕES

Laboratório de Carbonização e Combustão LC²

Departamento de Engenharia Mecânica da UFMG Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG

- Estudo dos Fatores que Influenciam na Carbonização.
- Estudo das Emissões da Carbonização.
- Modelamento Matemático de Fornos de Carbonização.
- Estudo da Co-Geração na Carbonização.
- Desenvolvimento de novas tecnologias de Carbonização.
- Desenvolvimento de novas tecnologias de Mitigação de Emissões e Gases de Efeito Estufa.

Livro: Fundamentos e Prática da Carbonização da Biomassa

CONTATOS

Paulo Cesar C. Pinheiro

Laboratório de Carbonização e Combustão Dept. Engenharia Mecânica da UFMG Tel: (31) 3409-5451

Pinheiro@demec.ufmg.br

RSConsultants

Tel: (31) 9127-8724, 3225-3472

Ronaldo@ISSBrazil.org

Biocarbo

EmiliaRezende@biocarbo.com www.biocarbo.com

